
nanomaterials

Article

Characterization of Monochromatic Aberrated Metalenses in
Terms of Intensity-Based Moments

Sorina Iftimie 1, Ana-Maria Răduţă 1 and Daniela Dragoman 1,2,*
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Abstract: Consistent with wave-optics simulations of metasurfaces, aberrations of metalenses should
also be described in terms of wave optics and not ray tracing. In this respect, we have shown, through
extensive numerical simulations, that intensity-based moments and the associated parameters defined
in terms of them (average position, spatial extent, skewness and kurtosis) adequately capture
changes in beam shapes induced by aberrations of a metalens with a hyperbolic phase profile. We
have studied axial illumination, in which phase-discretization induced aberrations exist, as well
as non-axial illumination, when coma could also appear. Our results allow the identification of
the parameters most prone to induce changes in the beam shape for metalenses that impart on
an incident electromagnetic field a step-like approximation of an ideal phase profile.
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1. Introduction

Metalenses, constituted from unit cells much smaller than the operating light wave-
length, are particularly designed metasurfaces (see, for instance [1–5]) for focusing and
imaging purposes. In the last years, metalenses have been thoroughly studied, differ-
ent configurations of unit cells—meta-atoms—being proposed in order to improve their
performances, in particular to minimize their chromatic as well as monochromatic aberra-
tions [6,7]. It was shown that chromatic aberrations can be alleviated by using metalenses
doublets [7,8], multilayer metasurfaces [9] or highly anisotropic meta-atoms [10,11] in
order to decouple the required phase profile and the material dispersion, or by employing
the so-called hybrid metalens design [12], which combines metalenses and phase plates
in the same structure. In many applications, however, at least when the available light
sources are narrowband, chromatic aberrations can be disregarded; spherical and coma
aberrations of metalenses, in particular, becoming significant. These aberrations can be
corrected by aplanatic metasurfaces [13] or well-designed doublet metalenses [7]. Note that
while an imposed hyperbolic phase profile leads to no spherical aberrations for axially inci-
dent fields, an additional phase profile should be added to correct off-axis aberrations—in
particular, coma [5,14].

In general, the estimation of aberrations is performed using ray tracing [15–17], gen-
eralizing the Debye integral and assigning specific aberration types to different Zernike
polynomials [18] or assuming a certain expression of the phase distribution imparted by
the metalens on an incoming optical field (see [4,19] and the references therein). Irre-
spective of the aberration type, its effect is to modify the beam shape in the focal plane
of the metalens. A quantitative characterization of the spatial distribution of light in-
tensity in terms of a set of numbers is not a trivial task, especially for multi-peaked field
distributions. On the contrary, for single-peaked distributions, intensity-defined moments
are being used already to characterize the average position, spatial extent and shape of
an arbitrary optical field in terms of the first- and second-order moment, and skewness
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and kurtosis parameters, respectively. The last two parameters, in particular, are employed
in order to distinguish the shape of statistical distributions in wide areas of research: in
medical imaging for identifying diseases [20,21] and the study of their evolution [22], in
material science for characterizing surface corrugations [23], for interpreting data in obser-
vational cosmology [24] and altimetry measurements [25], for studying freak waves [26]
or winds [27], financial time series [28], or for identifying the topological index in optical
vortices [29]. One advantage of using higher-order moments to characterize the shape of
an optical beam is that their evolution through first-order optical systems can be readily
calculated in terms of the matrices associated to these systems [30].

Whether the skewness, S, and kurtosis, K, are relevant parameters for single-peaked
distributions, quantifying the symmetry of a distribution and, respectively, the relative size
of tails of a distribution with respect to a normal, Gaussian function, there is no reason
to expect that the diffracted field after the metalens is Gaussian-like. On the contrary, as
will become clear in the following, the diffracted field is multi-peaked, rippled, but has
a dominant maximum on both transverse and longitudinal directions at the focal point.
This is the essential feature that allows the use of intensity-based moments, in particular
S and K, for characterizing the shape of the diffracted field. As such, the purpose of
this paper is to show that, when appropriately defined, in the sense that they mainly
capture the information in the dominant peak, these intensity moments can describe
the optical field in the focal plane of a metalens and the associated aberrations, and
can help with identifying the factors that most affect the focusing performances. This
approach is consistent with and generalizes wave-optics simulations of metasurfaces, which
should also be used, instead of raytracing, for characterizing aberrations of metalenses.
Although restraining our study to monochromatic aberrations only, our analysis is general
in the sense that we do not refer to a particular metalens but consider a general diffracting
surface consisting of a discrete number of meta-atoms that impart a precisely controllable
phase on an incident light field, such that the metalens approximates in a reasonable way
the ideal continuous hyperbolic phase distribution of a focusing element. We also assume
that the transmission coefficient of the metalens is the same across its surface. Unlike other
treatments of aberrations mentioned before, we take into account specifically the discretized
phase front after the metalens, which in itself is an important source of aberrations. In all
cases studied in this paper the intensity-based moments are used to analyze the influence
of different parameters on the field intensity at the focal point. Correlating the results with
expected behaviors, we conclude on the appropriateness of using intensity-based moments
in characterizing aberrated non-single-peaked distributions.

2. Intensity-Defined Moments for Characterizing Metalenses

We study in this paper metalenses under axial and off-axis illumination, conditions
under which spherical and coma aberrations, respectively, can occur. Whereas the light
intensity distribution of a radially symmetric metalens would keep its symmetry in the pres-
ence of spherical aberrations only, such a behavior would no longer be true when coma
is present. Therefore, throughout this paper, we assume a radially symmetric metalens,
placed in the (x,y) plane, and follow the intensity distribution through this focusing sys-
tem in a longitudinal (x,z) plane (y = 0), with z being the propagation direction; tilted
(with respect to the x axis) collimated incident fields make an angle θ 6= 0 with the z axis.
Alternatively, we can imagine that the present analysis refers to cylindrical metalenses.

We assume throughout this paper that the metalens is designed to impart a phase
profile on an incident light distribution that approximates the ideal, continuous, hy-
perbolic spatially varying phase distribution ϕid(x,y) = (2π/λ)[f − (x2 + y2 + f 2)1/2] of
a lens with focal length f for a given light wavelength λ; in our case y = 0, so that
ϕid(x) = (2π/λ)[f − (x2 + f 2)1/2].

The metalenses studied in this paper consist of N unit cells with the same transmittance
(considered as 1 for simplicity) and the dimension Λ along the x axis. The dimension
D = NΛ of the whole metalens is considered as being defined by an opaque aperture,
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such that no light passes through the metalens plane outside the metalens region. Each
cell is supposed to impart a controllable phase ϕm to an incident optical field across its
finite dimension. This is the case, for instance, for metalenses formed from anisotropic
meta-atoms that can rotate with an azimuthal angle α in the metalens plane (see the inset
of Figure 1a); then, for circularly polarized incident fields ϕm = ±2α [4,31], the plus and
minus signs corresponding to right- and left-circular polarizations, respectively. Thus,
because the metasurface is not continuous but is formed from discrete unit cells, it is not
possible to generate a continuous phase distribution ϕid(x), even if the azimuthal angle α

of the metalens varies continuously.

Nanomaterials 2021, 11, x FOR PEER REVIEW 3 of 12 
 

 

with focal length f for a given light wavelength λ; in our case y = 0, so that φid(x)= (2π/λ)[f 
− (x2 + f2)1/2]. 

The metalenses studied in this paper consist of N unit cells with the same 
transmittance (considered as 1 for simplicity) and the dimension Λ along the x axis. The 
dimension D = NΛ of the whole metalens is considered as being defined by an opaque 
aperture, such that no light passes through the metalens plane outside the metalens 
region. Each cell is supposed to impart a controllable phase φm to an incident optical field 
across its finite dimension. This is the case, for instance, for metalenses formed from 
anisotropic meta-atoms that can rotate with an azimuthal angle α in the metalens plane 
(see the inset of Figure 1a); then, for circularly polarized incident fields φm = ±2α [4,31], the 
plus and minus signs corresponding to right- and left-circular polarizations, respectively. 
Thus, because the metasurface is not continuous but is formed from discrete unit cells, it 
is not possible to generate a continuous phase distribution φid(x), even if the azimuthal 
angle α of the metalens varies continuously. 

We assume in the following that the azimuthal angle α of meta-atoms does not 
change continuously from one unit cell to the other, but in steps of ∆α, the corresponding 
phase imparted by unit cells being allowed to vary in steps of ∆φm = ±2∆α. The values of 
∆α (and thus of ∆φm) are chosen by design; for smaller values of this parameter, the ideal 
phase profile is better reproduced, but the complexity in the fabrication of metalenses is 
increased. Then, the actual discrete phase distribution imparted by the metalens is 𝜑(𝑥) = ቊ 𝜑௦௧(𝑥), 𝜑௦௧(𝑥) − 𝜑ௗ(𝑥) < ∆𝜑(𝑥)/2𝜑௦௧(𝑥) − ∆𝜑, 𝜑௦௧(𝑥) − 𝜑ௗ(𝑥) ≥  ∆𝜑/2 (1) 

where φstep(x) = ∆φmInt[φid(x)/∆φm], with Int[] denoting the integer part of the argument. 
This discretization of the phase profile leads to unavoidable errors in phase 
implementation. The normalized distance between the ideal and step-like phase profiles 

could be estimated as σ = ට∑ ൣ𝜑ௗ൫𝑥൯ − 𝜑൫𝑥൯൧ଶ௫ೕ ∑ 𝜑ௗଶ ൫𝑥൯௫ೕൗ , where the sum is taken 

over the centers xj = Λ/2 + (j − 1)Λ of all N unit cells that form the metalens, with j an 
integer such that −N/2 < j ≤ N/2. 

 
Figure 1. (a) Ideal (black line) and step-like approximations when ∆φm is 10° (red line) and 20° (blue line) of the phase 
distribution of a lens with a focal distance of f =10 mm, if λ = 1.3 μm, Λ = 450 nm and N/2 = 400; part of the figure is 
enlarged for better visualization of all curves. Inset: unit cell with anisotropic meta-atom at angle α. (b) Real part of 
collimated electric field immediately after the metalens with ∆φm = 10o for axial (blue line) and off-axis (red line), at θ = 3°, 
illumination. 

Figure 1. (a) Ideal (black line) and step-like approximations when ∆ϕm is 10◦ (red line) and 20◦ (blue line) of the phase
distribution of a lens with a focal distance of f = 10 mm, if λ = 1.3 µm, Λ = 450 nm and N/2 = 400; part of the figure
is enlarged for better visualization of all curves. Inset: unit cell with anisotropic meta-atom at angle α. (b) Real part
of collimated electric field immediately after the metalens with ∆ϕm = 10◦ for axial (blue line) and off-axis (red line), at
θ = 3◦, illumination.

We assume in the following that the azimuthal angle α of meta-atoms does not change
continuously from one unit cell to the other, but in steps of ∆α, the corresponding phase
imparted by unit cells being allowed to vary in steps of ∆ϕm = ±2∆α. The values of ∆α
(and thus of ∆ϕm) are chosen by design; for smaller values of this parameter, the ideal
phase profile is better reproduced, but the complexity in the fabrication of metalenses is
increased. Then, the actual discrete phase distribution imparted by the metalens is

ϕm(x) =
{

ϕstep(x), ϕstep(x)− ϕid(x) < ∆ϕm(x)/2
ϕstep(x)− ∆ϕm, ϕstep(x)− ϕid(x) ≥ ∆ϕm/2

(1)

where ϕstep(x) = ∆ϕmInt[ϕid(x)/∆ϕm], with Int[] denoting the integer part of the argument.
This discretization of the phase profile leads to unavoidable errors in phase implementation.
The normalized distance between the ideal and step-like phase profiles could be estimated

as σ =
√

∑
xj

[
ϕid
(

xj
)
− ϕm

(
xj
)]2/ ∑

xj

ϕ2
id
(

xj
)

, where the sum is taken over the centers

xj = Λ/2 + (j − 1)Λ of all N unit cells that form the metalens, with j an integer such that
−N/2 < j ≤ N/2.

For example, Figure 1a illustrates (modulo 2π) the ideal phase distribution of a lens
with a focal distance of f = 10 mm (black line), as well as the step-like approximations when
∆ϕm is 10◦ (red line) and 20◦ (blue line) if λ = 1.3 µm, Λ = 450 nm and N/2 = 400; these
values for f, λ and Λ will be used throughout the paper. The obtained σ values are about
2.2% for the metalens with a 20◦ step in ∆ϕm and of only 1.1% for that with a 10◦ step;
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although these values are not high, the changes in beam shape can be significant. The inset
of Figure 1a represents a unit cell of the metalens with a rotated meta-atom.

We assume in the following that the metalens is illuminated by a collimated op-
tical field given by Einc(x) = E0exp(i2πθx/λ), tilted at an angle θ and normalized such
that E0 = 1, the field immediately after the metalens surface, situated at z = 0, being
E(x, z = 0) = Einc(x)exp[iϕm(x)]. The real part of the field transmitted by the metalens in
Figure 1a with ∆ϕm = 10◦ is shown in Figure 1b with a blue line for normal incidence, θ = 0,
and with a red line for tilted incidence, with θ = 3◦. The spatial distributions of the ab-
solute value of the electric fields for the normal and tilted incidence cases in Figure 1b,
after the metalens, are illustrated in Figure 2a and, respectively, Figure 2b. All spatial
coordinates are normalized to the focal length f = 10 mm of the metalens. All simulations
have been carried out with the open-source program Scilab.
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regime is near-field) to the one-dimensional discontinuous optical field E(x, z = 0): 

Figure 2. (a,b) Spatial dependences of the absolute values of diffracted electric fields in Figure 1b. Spatial distributions in
the (c) transverse and (d) longitudinal planes of the absolute value of diffracted electric fields for ∆ϕm = 10◦, f = 10 mm,
and N/2 = 400 (black line), 600 (red line) and 800 (blue line). (c) Normalized field distributions; inset: not normalized.
The vertical red lines in the inset show the extent of the region taken into account for higher-order moments calculation for
N/2 = 600.

Assuming that N is an even number, we have calculated the electric field profile
for z > 0 applying the diffraction integral in the Fresnel approximation [32] (our working
regime is near-field) to the one-dimensional discontinuous optical field E(x, z = 0):

E(x, z) =
1√
iλz

exp(ikz)
∫ NΛ/2

−NΛ/2
E
(

x′, z = 0
)

exp
[

ik
2z
(
x− x′

)2
]

dx′ (2)

To pinpoint the focal plane position along the z axis, as well as for describing the trans-
verse field distribution along the x axis, we need to look at the field and intensity I ≈ |E|2

distributions along both x and y axes; thus, we have extracted the following parameters:
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- the average position of the intensity distribution along the transverse x and longitudi-
nal z axes, defined via the first-order moment of the intensity I(x,z) as:

ξav = 〈ξ〉 =
∫

ξ I(ξ)dξ/
∫

I(ξ)dξ, ξ = x, z (3)

- the spatial extent of the intensity distribution along the x and z axes, defined via
the second-order moment of the intensity as [33]

∆ξ = 4
√
〈 ξ2〉 = 4

√
(ξ − ξav)

2 I(ξ)dξ/
∫

I(ξ)dξ , ξ = x, z (4)

- the shape of the intensity distribution along the x and z axes, parameterized via
the skewness S and kurtosis K coefficients defined as:

Sξ =
〈

ξ3
〉

/
〈

ξ2
〉

3/2, Kξ =
〈

ξ4
〉

/
〈

ξ2
〉

2, ξ = x, z (5)

with 〈ξm〉 =
∫
(ξ − ξav)

m I(ξ)dξ/
∫

I(ξ)dξ , m = 3, 4. As mentioned before, the skewness
quantifies the (lack of) symmetry of a distribution, negative (positive) S values indicating
distributions that have a left (right) tail longer than the right (left) tail for single-peaked
distributions, while S = 0 corresponds to a distribution that is symmetric to the left and
right. The kurtosis, K, on the other hand, evaluates the relative size of tails of a single-
peaked distribution with respect to a normal, Gaussian function, for which K = 3 (and
S = 0). Thus, K values higher (lower) than 3 indicate distributions that have heavy (light)
tails with respect to a Gaussian.

In our case, however, the field distributions of interest are not single-peaked. For
axial illumination, for instance, we are interested in the spatial field distribution along
the z axis (for x = 0), as well as for the transverse field distribution at the focal point;
the latter was defined as the x-distribution at the z coordinate at which the absolute value
of the z-dependent field is the maximum. These distributions, shown in Figure 2c,d, reveal
that the field after the metalens, although displaying a dominant maximum near the focal
point of the perfect lens, shows a multi-modal structure along both x and z axes, with
pronounced ripples along x. These ripples especially affect the S and K values (and not
so much the average positions and spatial extents), especially since their maxima vary
with different parameters used in simulations. As a result, in order to obtain intensity-
based moments pertaining only to the main peak of the field distribution along x, we
have first determined xav and ∆x, taking into account absolute values of the electric field
higher than 1/40 of the peak value, and then calculated S and K, taking into account only
the electric fields with absolute values in an interval of 5∆x centered around xav. As can be
seen from the inset of Figure 2d, where the relevant region for N/2 = 600 (the red curve)
has been highlighted by the two (also) red vertical lines, this interval is broad enough to
account for the tail of the field intensity. No such precautions were needed for calculating
the intensity-based moments along the z axis, except for considering an electric field with
higher absolute values than the background (equal to 1), which was removed.

3. Numerical Simulations Results
3.1. Axial Illumination of Metalenses

In this case, discretization-induced focusing errors are dominant since spherical aber-
rations are not expected to be present for hyperbolic metalenses, at least from a wave-optics
point of view. We have considered metalenses with different apertures, namely with
N/2 = 400 to 800 in steps of 50, different focal lengths: f /2, f and 3f /2, with f = 10 mm,
as well as different steps ∆ϕm: 1◦ (almost continuous rotation of meta-atoms), 10◦, 15◦,
20◦ and 30◦. The calculated parameters defined in terms of intensity-based moments
along x and z are represented in Figures 3 and 4, respectively; due to the symmetry of
the problem xav = 0 and Sx = 0 in all cases. In these figures, as well as in the following
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ones, the steps in ∆ϕm are indicated in the legend and the corresponding curves are plotted
with different colors, while the curves corresponding to f /2, f and 3f /2 are drawn with
different line types: continuous, dashed–dotted and dashed lines, respectively. The results
in Figure 3 show that the spatial extent of the focal point along the x axis increases with
f, while the evolution of ∆x with the aperture size is in agreement with the simulations
in Figure 2c. The three thin black lines in the upper Figure 3 represent the dependencies
on N of the function 2λ/NΛ = λ/NA, i.e., of the double of the Abbe diffraction limit;
it can be seen that ∆x defined in terms of second-order intensity moments is related to
this measure of the diffraction limit and almost coincides with it except for large phase
discretization steps.
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figure (a) represent the geometric location of the focal spot.

Indeed, for phase steps of 30◦, the focal spot increases in magnitude, except for small f
values and low diameters. On the other hand, the overall shape of the light distribution in
the focus, parameterized by Kx, does not depend very much on the phase step and the size
of the aperture, unless the phase discretization step is large; in this last case, the beam
shape becomes less heavy-tailed. Both ∆x and Kx are good indicators of the expected
behavior that the focusing performances deteriorate with an increase in ∆ϕm.
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Along the z direction, all parameters defined above have a very weak dependence
on the phase step, as can be seen from Figure 4. The average position of the intensity
maximum is in all cases close to the geometrical focus, depicted with thin black lines in
the upper Figure 4a, and gets closer to this geometric value as the aperture size increases,
while the spatial extent of the focal spot decreases with increasing N, as well as with
the increase of the focal strength.

While these behaviors could be expected from general considerations, the strong
variations of Sz and Kz with both N and f suggest that the shape of the focalized beam
depends on these parameters, in agreement with the simulations in Figure 2d, performed
for different N values, and Figure 5, performed for different f values. Thus, both Sz and Kz
are good indicators of the beam shape variation along the z axis.
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3.2. Non-Axial Illumination of Metalenses

In this case, the coma aberration is expected to appear, besides the discretization-
induced aberrations. As in the previous case, we have plotted the parameters defined in
terms of intensity moments for different phase discretization steps and aperture sizes. As
shown in Figure 2b, the light field propagates in this case along a tilted direction, to find
the relevant x- and z-dependent field distributions and the corresponding intensity-based
moments; consequently, we have first plotted the field along the propagation direction
(along x = ztanθ) and chosen the transverse z = const. focusing plane as that for which
the intensity is the maximum. Figure 6a plots the dependence on the aperture size of
the transverse average position and spatial extent of the focalized beam for different phase
steps indicated in the legend and for three tilt angles: θ = 1◦ (solid line), 3◦ (dashed–
dotted line) and 5◦ (dashed line), while Figure 6b represents, with matching line types,
the corresponding dependences of Sx and Kx. The thin black lines in the upper Figure 6a
indicate the geometrical positions x = f tanθ. As can be seen from these figures, except for
∆ϕm = 30◦, and for ∆ϕm = 20◦ at large apertures, the beam shapes do not vary significantly;
the transverse average position is close to the geometric location, and becomes closer as
the aperture size increases, while the spatial extent of the beams decreases as N increases,
as in the case of axial illumination. However, as the tilting angle increases below 7.5◦,
the behavior of all intensity-based moments changes dramatically. This can be seen from
Figure 7, which represents the same parameters as Figure 6, with similar line types but for
θ = 5◦ (solid line), 7.5◦ (dashed–dotted line) and 10◦ (dashed line), and also from Figure 8,
which illustrates with the same line types as Figure 7 the aperture size dependence of
the corresponding parameters along the z direction (basically, along the tilted propagation
direction). In the last case, the dependences for θ = 1◦, 3◦ and 5◦ almost superimpose each
other (as for the axial illumination case), so we have not represented these cases separately.
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To understand why the behavior of all intensity-based moments at large tilting angles
changes dramatically—change that is more pronounced for larger aperture sizes—we
have plotted the spatial distribution of the absolute field values in this case (see Figure 9a)
and have discovered that, besides the propagation direction imposed by the tilting angle,
constructive interferences appear along other directions, such that we no longer have one
propagating beam but several. Figure 9b,c show the transversal and longitudinal, respec-
tively, field distributions in this case for ∆ϕm = 30◦ and N/2 = 400 (black line), 600 (red line)
and 800 (blue line). A second transverse peak is clearly visible in this case for the largest
aperture size. The z-distribution of the field no longer has one obvious maximum for larger
apertures, but several, in agreement with the simulations in Figure 9a. Again, the change in
beam shape, especially significant at high tilt angles and high apertures, is well-described
by Sx, Kx, Sz and Kz parameters, whereas the appearance of additional beams propagating
at other angles has a pronounced effect also on the spatial extent and average position
values along both x and z.
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4. Discussions and Conclusions

We have shown, through extensive numerical simulations, that intensity-based mo-
ments and the associated parameters defined in terms of them (average position, spatial
extent, skewness and kurtosis) adequately capture changes in beam shapes induced by
aberrations. The approach towards investigating aberrations taken in this paper is novel in
the study of metalenses, for which ray-optics and the associated phase distribution-based
methods are the techniques of choice [15–19]. On the other hand, our approach is consis-
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tent with the general numerical simulation techniques of metalenses, which rely on wave
optics. In addition, for subwavelength structures with discretized phase profiles, which are
the hallmark of metalenses, it is debatable if ray optics is an appropriate tool.

As we have taken as a working example a metalens with a hyperbolic phase profile,
only phase-discretization-induced aberrations (not studied in other works) could have oc-
curred for axial illumination, while coma could have been present at non-axial illumination.
As our approach can take into account tilts in different planes and aperture dimensions,
parameters that can be associated with different standard types of aberrations, and even
different incident beam shapes, our focus was to identify the parameters most prone to
induce changes in the beam shape.

In particular, for axial illumination, we have found that the most detrimental param-
eter is the phase discretization step: values of ∆ϕm higher than 20◦ affect the focal spot
along the x direction, but do not influence the field distribution along z in the case of axial
illumination, the focal length inducing significant changes in this distribution together
with the aperture size. In general, higher aperture sizes lead to better field focalization
along both transverse and longitudinal directions, and to an increase in the tails of the field
distribution. Again, phase steps higher than 20◦ considerably influence the spatial extent
along x and the tails of the field distribution along this axis for non-axial illumination,
having basically no effect on the field distribution along z. However, all intensity-based
moments change dramatically at large tilting angles, at which additional paths of construc-
tive interference form. The change is much more significant at large apertures, meaning
that larger apertures favor the appearance of new constructive interference paths. All these
results are not unexpected; they do not in themselves state something new but confirm
the fact that metalenses aberrations can be described using wave-optics, in particular using
intensity-based moments of light distributions. These results also show that phase dis-
cretization steps should be minimized in proper designed metalenses, while the diameters
of the metalenses should be limited if non-axial illumination is envisaged.

These conclusions, although drawn following simulations of a certain metalens (with
well-defined parameters), are believed to be generally due to scaling laws in wave optics.
The results in this paper show that, even along both x and z axes, the spatial distribution of
a diffracted field is not single-peaked; the S and K parameters are appropriate for describing
the shape of the light distributions, and as such generalizes the research fields in which
these parameters can be used. However, when significant ripples or, in general, noise is
present, one has to be careful of the way to calculate intensity-based moments: higher-order
moments are more prone to errors. This is the reason why we have defined a certain range
for relevant field values only for the x direction. The extent of this range depends on
the field distribution itself but must be chosen attentively before any analysis of field shape
can be performed.
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